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Abstract
A new type of quantum-size effect (QSE) is predicted for films with a large
correlation radius of thickness fluctuations. The large-period oscillations
of conductivity σ as a function of thickness L replace the usual QSE for
random inhomogeneities with Gaussian and exponential power spectra. A
simple quasiclassical picture and an exact quantum explanation are given. The
positions of peaks are obtained analytically. High sensitivity of the underlying
strong coupling of low quantum well states to thickness fluctuations is inherent
to other types of film as well.

Progress in nanofabrication has rekindled interest in studies of quantum well (QW) states
in ultrathin metal films exhibiting a quantum-size effect (QSE). Recent QW experiments
on quantized metal films include conductivity [1], spectroscopy [2], susceptibility [3], and
STM [4] measurements. The QSE is caused by quantization of particle motion in a film,
px → πj/L (below h̄ = 1), and splits the 3D energy spectrum ε(p) into a set of minibands
εj (q) (q is the 2D momentum along the film). Experimentally, the linewidth of QW states
is often limited by the thickness fluctuations [5]. Below we demonstrate that thickness
fluctuations with a large correlation radius lead to a peculiar coupling between QW states
with low quantum numbers. As one of the observable consequences, we predict a new type
of QSE oscillation in the conductivity of metal films. This opens the way to the observation
of the QSE in metal films in which the usual QSE is suppressed. This could also resolve the
long-standing controversy regarding the influence of the structure of a nanoscale film on its
resistivity [6] and explain the large period of QSE oscillations in some experiments [1].

The form of the correlation function for thickness fluctuations ζ(s) is routinely identified
in surface scattering experiments. However, there has been no comprehensive experimental
or theoretical study of the effect of the shape of ζ(s) on QW states inside the films. We
performed such a study for the conductivity of quantized metal films. The most striking result
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is the new QSE described in this paper. The results can help in the extraction of ζ(s) and the
correlation radiusR from conductivity measurements whenR is relatively large. We compared
σ(L) for various types of correlation function identified in scattering experiments and used in
calculations [7, 8]: the Gaussian correlator,

ζ(s) = �2 exp(−s2/2R2), (1)

power-law correlators with various values of µ,

ζ(s) = 2µ�2[R2/(s2 + R2)]1+µ, (2)

including the Staras correlator µ = 1, the Lorentzian

ζ(s) = 2�2R2/(s2 + R2), (3)

and correlators with a power-law Fourier image,

ζ(q) = 2π�2R2/(1 + q2R2)1+λ. (4)

The last group includes the Lorentzian correlator in momentum space, λ = 0, and the
exponential correlator ζ(s) = �2 exp(−s/R) at λ = 1

2 . All the correlators describe thickness
fluctuations of the same average amplitude � and, except for (3), lead to the same conductivity
σ in the long-wavelength limit R/λF → 0 in which σ should not depend on details of the
inhomogeneities. The Lorentzian (3) has a logarithmically divergent power spectrum and is
often considered ‘unphysical’. We added this correlator because it is used in calculations. To
deal with the divergency, one can truncate (3) at large distances (commonly, at about a tenth
of the system length [7]). (Sometimes, the divergence of ζ(q) is associated with a fractal
nature of the surface; to what extent our approach can be used for films with fractal surfaces
is unclear.)

In all four figures, curve 1 corresponds to the Gaussian correlator (1), curve 2 to (2) with
µ = 1

2 , and curves 3 and 4 to (3) with λ = 1
2 and 0. The results for conductivity are based on the

formalism [11] that unites earlier approaches [12] to transport in systems with random rough
walls. Elastic wall scattering leads to transitions between the states, εj (q) ↔ εj ′(q′), with the
probability Wjj ′(q, q′) which is determined by the power spectrum of thickness fluctuations
ζ(qj − qj ′) (qj is the Fermi momentum for the miniband εj , εj (qj ) = εF):

Wjj ′(q, q′) = 2

m2L2
ζ(qj − qj ′)

(
πj

L

)2(
πj ′

L

)2

, (5)

where ζ = ζ1 + ζ2 is the sum of the correlation functions of inhomogeneities on the two
walls, and, in order not to create parameter clutter, we assumed that the inhomogeneities from
different walls are not correlated with each other. The transport equation with the scattering
probabilities (5) is a set of coupled equations for the distribution functions nj (q) in each
miniband εj :

dnj
dt

= 2π
∑
j ′

∫
Wjj ′ [nj ′ − nj ]δ(εjq − εj ′q′)

d2q ′

(2π)2
. (6)

The structure of equations (5), (6) is the same as for scattering by impurities. For degenerate
fermions, the transport equation reduces, after standard transformations, to a set of linear
equations in νj :

qj/m = −
∑
j ′

νj ′(qj ′)/τjj ′ ,

2

τjj ′
= m

∑
j ′′

[δjj ′W
(0)
jj ′′ − δj ′j ′′W

(1)
jj ′ ]
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wheren(1)j = νj δ(ε−εF)eE is the first angular harmonic ofnj (q) at q = qj , andW(0,1)
jj ′ (qj , qj ′)

are the zeroth and first harmonics of W(qj − qj ′) over the angle q̂jqj ′ . The solution of these
equations provides the conductivity of the film:

σ = − e2

3h̄2

∑
j

νj (qj )qj = e2

3mh̄2

∑
j,j ′

(
1

τ

)−1

jj ′
qj ′qj . (7)

Instead of three length scales,L,R, and λF = (2mεF)
−1/2, we will use three dimensionless

parameters:

x = R/λF, y = R/L, z = L/λF. (8)

Usually, the QSE in metal films is associated with a saw-like dependence of the
conductivity σ on the film thickness L [1,6]. The oscillations correspond to abrupt changes in
the numberS = Int(L/λFπ) of the occupied minibands εj at the points where the film thickness
L = jπλF with integer j (the Fermi wavelength λF = 1/pF). These QSE oscillations exist
irrespective of whether the decay of QW states is caused by bulk or surface scattering [9]. The
period π/pF of this QSE for good metals is atomic, making the observation of oscillations in
σ(L) difficult.

The drops in σ(L) at L = jπλF are explained by an opening of j new scattering channels
for the scattering-driven transitions to and from the newly accessible highest miniband εj . The
amplitude of these drops (‘sawteeth’) is determined by comparison of the interband transition
probabilities Wj �=j ′(q − q′) with the intraband scattering Wjj (q − q′). When the off-diagonal
Wj �=j ′ become small, the amplitude of the QSE decreases, reducing, eventually, the sawteeth to
barely visible kinks onσ(L) [10]. If the thickness fluctuations are the main source of scattering,
the usual saw-like QSE can be observed for the inhomogeneities with small correlation radius
(‘size’) R < L. For larger R the interband transitions are often suppressed, making σ(L)

smooth.
Below we demonstrate that there exists a new type of QSE oscillation at R > L. The

new oscillations can be observed if the Fourier image ζ(q) of the correlation function of the
thickness fluctuations ζ(s) (the so-called power spectrum) is rapidly going to zero at large q.
This finding is illustrated in figure 1. Curves 1 and 2 for σ(L) for correlators with exponential
power spectra exhibit different types of oscillation than the usual saw-like QSE in curves 3 and 4
for the power-law spectral functions. The explanations for the new QSE and the disappearance
of the usual saw-like QSE are interwoven.

The rate of decrease of ζ(qj − qj ′) at large q depends on the correlation length R via the
parameters νjj ′ = R|qj − qj ′ |:

νjj ′ = ∣∣√z2 − π2j 2 −
√
z2 − π2j ′2∣∣R/L (9)

where z = L/λF. The diagonal νjj = 0. The faster the Wj �=j ′ go to zero with increasing νj �=j ′ ,
the earlier the usual saw-like QSE disappears.

The power spectrum of the Gaussian (1) decays at large qR as exp(−q2R2/2) and the
off-diagonal Wjj ′ go to zero faster than the diagonal ones by the factor exp(−ν2

jj ′/2). For the

correlators (2), (3),Wj �=j ′ go to zero as νµ−1/2
jj ′ exp(−νjj ′). The slowest, power-law decay of the

power spectrum corresponds to inhomogeneities (4). The amplitudes of the QSE drops in σ(L)
at the points z = L/λF = kπ decrease with increasing νkj at a rate that reflects the dependence
Wkj (νkj ). Accordingly, the QSE saw disappears, with increasing R, first for the surfaces with
Gaussian inhomogeneities, then for the correlators (2), (3), and almost never for (4). These
different rates of suppression of the QSE are illustrated in figure 1 at x = R/λF = 200. The
2D conductivity σ(L) is parametrized as

σ(L) = 2e2

h̄

R2

�2
fL(z, x). (10)
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Figure 1. Normalized functions fL(z) for σ(L) (equation (10)), fL(z)/fL(z = 110), at x = 200.
Curves 1 and 2 (correlators (1) and (2) with µ = 1

2 ; fL(110) = 6.9 × 104; 7.5 × 103) exhibit
a new type of QSE oscillation. Curves 3, 4, for surfaces with a power spectrum (4) (λ = 1

2 ; 0;
fL(110) = 3.9 × 102; 1.3 × 101), exhibit the usual saw-like QSE.

Since fL(z, x = 200) for correlators (1)–(4) with the same values of � and R have different
orders of magnitude, the functions fL, for better comparison, are normalized by their values
at z = 110: fL(z)/fL(110). At x = 200, exp(−ν2

j �=j ′/2) and exp(−νj �=j ′) are small and the

QSE is suppressed for Gaussian (1) and power-law (2) (µ = 1
2 ) correlations (curves 1, 2), but

still persists for the slowly decaying power spectra (4) with λ = 1
2 ; 0 (curves 3, 4).

What is unexpected is the appearance of new large oscillations on curves 1, 2 for the
Gaussian and power-law correlators. These oscillations are not related to the usual QSE, i.e.,
to abrupt changes in the number of occupied minibands S(z) = Int(z/π): the oscillations are
less sharp, have a larger period roughly proportional to z2, and appear only at relatively large S.

The explanation involves the interband transitions. It seems that at largeR the off-diagonal
νjj ′ (9) are large and the interband transitions are suppressed. However, for large z few of the
elements νjj ′ with small j , which are close to the main diagonal, could become small even for
large x; νj,j+1(j 
 z/π) ∼ π2x(2j + 1)/2z2. Then the transitions j ↔ j + 1 could become
noticeable. Analysis shows that these transition channels open when

W
(0)
j,j+1(x, z) ∼ W

(0)
jj (x, z) − W

(1)
jj (x, z) (11)

(W(0,1)
jj ′ are the angular harmonics of W(qj − qj ′) over the angle q̂jqj ′ ) resulting in drops in

σ(L). Equations (11) define the positions zj (x) of such drops. At z = z1(x), W12 is the
first of the transition probabilities to acquire the ‘normal’ order of magnitude. At z = z2(x),
W23 becomes noticeable, then W34, etc. The amplitudes of the drops rapidly decrease with
increasing z. In the end, when many interband channels with low j are open, σ(L) becomes
smooth, but with a much lower slope than in its initial part. The transitions j ↔ j + 1 with
high j always remain suppressed at large x and the usual saw-like QSE does not reappear. The
growth of transition probabilities for transitions j ↔ j + 2 does not result in new oscillations
in σ(L). At the points z(x) where Wj,j+2 becomes large, W(0)

j,j+2 ∼ W
(0)
jj − W

(1)
jj , the states j

and j + 2 are already strongly coupled via Wj,j+1 and Wj+1,j+2.
A simplified, qualitative explanation of the effect and an estimate of the peak positions

are as follows. Scattering by surface inhomogeneities changes the tangential momentum by
%q ∼ 1/R. This is sufficient for the interband transition when this %q ∼ qj −qj+1. Since we
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are interested in the minibands with a relatively small index j , q2
j − q2

j+1 ∼ 2(qj − qj+1)/λF

(when L/λF � 1 and the index j is not large, the lateral momentum qj ∼ 1/λF). On the other
hand, the energy conservation yields q2

j − q2
j+1 = π2(j + 1)2/L2 − π2j 2/L2 ∼ 2π2j/L2.

Combining these expressions, the condition for robust interband transitions j ↔ j + 1 can be
written in the form

L2 ∼ π2jRλF (12)

or, in dimensionless notation (8), z2 ∼ π2jx. Accordingly, with increasing L the transition
channel opens first for the electrons in the lowest miniband ε1(q)with j = 1, i.e., for the grazing
electrons. Note, that these particular electrons contribute the most to the conductivity. (In the
quasiclassical film without bulk scattering, the current, which is an integral over momenta,
diverges when the component of momentum perpendicular to the film goes to zero, i.e., for the
grazing electrons. Without the bulk scattering, the conductivity is finite only because of the
quantum cut-off at px = π/L.) Since the electrons from the lowest miniband are responsible
for the dominant contribution to the conductivity, the conductivity drops almost by half at the
point z2 ∼ π2x whereW12 becomes comparable toW11 and the effective cross-section doubles.
Let us now start increasing L. At higher values of L, z2 ∼ 2π2x, equation (12), a new channel
opens for the electrons from the next miniband j = 2 with px = 2π/L and the conductivity
drops again, and so on. The only difference is that the contribution of the electrons from the
higher minibands falls rapidly with an increase in the band index j and the drops in conductivity
σ(L), which are associated with the opening of new scattering channels for electrons from
these minibands, become smaller and smaller. In some sense, the number of visible peaks in the
curve σ(L) and their relative heights give a good visual estimate of the number of ‘important’
minibands and of their relative contribution to conductivity. With further increase in the film
thickness, when L becomes large, L � R, the change of momentum %q ∼ 1/R is sufficient
to excite all interband transitions and the ordinary QSE with the sawteeth at the points z = πj

is restored.
In the films with a non-exponential power spectrum of inhomogeneities, i.e., with a more

uniform distribution of inhomogeneities over the sizes in momentum space, this new size effect
cannot be observed because the particles from all minibands can always find inhomogeneities
of the right size that ensure interband transitions irrespective of the separation between the
walls.

According to [11], for Gaussian inhomogeneities

W
(0,1)
jj ′ = 4π5�2R2

m2L6
[e−QQ′

I0,1(QQ′)]e−(Q−Q′)2/2, (13)

(Q = qjR, Q′ = qj ′R). The asymptotic solution of equations (11), (13):

zj (x) ≈ π
√
(2j + 1)x/4{ln[x

√
2(1 + 1/j)]}−1/4. (14)

agrees very well with the simplified estimate (12). These values zj (x = 200) =
24.3; 31.7; 37.7; . . . agree with the positions of the peaks on curve 1 of figure 1.

For the surface with the power-law correlations of inhomogeneities (3) with µ � 1, the
solution of (11) is also similar to equation (12):

zj (x) = π
√
(2j + 1)x/4ν,

ν ∼ ln{x(1 + 1/j)
√

2 ln[x(1 + 1/j)]}.
(15)

The saw-like drops in conductivity for the usual QSE correspond to the opening of
transitions to and from the newly accessible, highest miniband while all other interband
transitions are also allowed. The drops are equidistant with the period π along the z-axis,
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Figure 2. Functions fR(y) for σ(R) (equation (17)), at z = 64.4. Curves 1 and 2 (correlators (1)
and (2) with µ = 1

2 ) exhibit the new QSE (steps). Curves 3, 4 (correlators (4), λ = 1
2 ; 0) are

smooth in accordance with the usual QSE.

zj = πj . The new QSE oscillations in figure 1 correspond to the opening of transitions between
the lowest minibands, while the transitions in and out of higher minibands are suppressed. The
peaks (12), (14), (15) are almost equidistant if plotted against z2: z2

j ∼ π2jx.
The initial parts of the curves 1, 2 for σ(L) at large x are described analytically by the

diagonal approximation of [11]:

σ � 2e2

3h̄2m2

∑
j

q2
j

W
(0)
j − W

(1)
j

. (16)

In this range of small L, the dependence of conductivity on thickness is close to σ ∝ L(5+α)

(small α depends on x); experimentally, the index is about 6. After the region of new QSE
oscillations, the curves are again smooth, but with a smaller tangent. The numerical analysis
yields either σ = A+BL1+β with small β or a +bL+cL2, close to experimental data (see [13]
and the last of references [1]) and different from the behaviour of σ(L) at x = pFR 
 1 (see
the second references in [11,12]). The dependence of the conductivity on the correlation radius
of the surface inhomogeneities, σ(R), is best illustrated by the function fR(y, z = constant):

σ(R) = 2e2

h̄

L2

�2
fR(y, z = constant), (17)

with y = R/L. The number of occupied minibands S does not depend on the correlation
radius of inhomogeneities, and fR(y, z = constant) does not have any signs of the usual QSE.
Instead, the curves exhibit a step-like structure that corresponds to our new QSE of figure 1.

The positions of the singularities yj (z) for fR(y, z = constant) are identified from
equation (11) with x = yz. The functions fR(y, z = 64.4) are plotted in figure 2 for several
correlators. The steps on curve 1 at the points y = 25; 14; 8; . . . agree well with the solution
y(z) of (14). The same feature is also observed for the power-law correlators. (Minima in
all curves near the vertical axis describe the region of the most effective surface scattering at
pFR ∼ 1.)

The dependence of the conductivity σ on the density of fermions N or their Fermi
momentum pF is best displayed by the function fN(z):

σ(pF) = 2e2

h̄

L2

�2
fN(z, y = constant). (18)
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Figure 3. Normalized functions fN(z) for σ(pF) (equation (18)), fN(z)/fN(z = 44), at
y = R/L = 1. Curves 1 and 2 (correlators (1), (2) with µ = 1

2 ; fN(44) = 5 × 103; 2.5 × 102)
exhibit suppressed usual QSE peaks at small z that gradually transform at higher z into the new
QSE oscillations with larger period. Curve 4, for surfaces with power spectrum (4) (λ = 0;
fN(44) = 20.2), exhibits the usual QSE.

Function σ(pF) exhibits the usual saw-like QSE at not very high y for all types of correlator.
With increasing y, the sawteeth disappear, first for the Gaussian and later for the power-law
correlators, and persist for the power-law correlators in the momentum space. Curves fN(z)

exhibit the effect related to the new QSE oscillations of figure 1 for σ(L) and to the steps in
figure 2 for σ(R). Figure 3 shows normalized (by the highest value) functions fN(z) for the
correlators (1) (curve 1), (2) (µ = 1

2 , curve 2), and (4) (λ = 1
2 , curve 4). The correlation radius

R is small, y = 1, and the figure illustrates the transition from the usual to the new QSE.
The correlators (4) have a slowly decaying power spectrum and the functions fN(z) reveal the
usual saw-like QSE. Curve 2 starts as a usual QSE curve, but, with increasing z, the oscillations
lose the saw-like shape and increase in period. Curve 1, for the Gaussian correlator with a
much-faster-decaying power spectrum, does not exhibit the shape and periodicity of the usual
QSE even at small z.

Curves fN(z) for the same correlators, but at y = 20, are shown in figure 4. Curves 3, 4
still exhibit the usual QSE, while curves 1, 2 show well-developed oscillations of the new type.
The peaks on curve 1 at zj (y = 20) = 19.8; 50.3; 83.6; . . . are described by (14) with x = yz.

In summary, we predict a new type of QSE in the conductivity of metal films. The
effect is explained by strong coupling of low QW states caused by thickness fluctuations. The
positions of the peaks (14), (15) are determined analytically. New QSE anomalies can be seen in
dependencies the conductivity, the film thickness, the correlation radius of the inhomogeneities,
and the particle density (Fermi momentum). These new singularities replace the usual QSE
for surface inhomogeneities with large correlation radius and rapidly (exponentially) decaying
power spectra such as for Gaussian or power-law correlators. Surfaces with power-law decay
of the Fourier image of the correlation function exhibit the usual QSE. The effect is especially
important for high-quality films with large thickness domains such as [2, 5]. The results
identify the thickness fluctuations from conductivity measurements. Indices in the power-law
dependence σ(L) before and after the oscillation region agree with experiment. The large
period of the new oscillations makes the observation of the QSE in metal films easier and can
explain data from the third of references [1].
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Figure 4. fN(z)/fN(z = 126) for y = R/L = 20. Curves 1, 2 (correlators (1) and (2), µ = 1
2 ;

fN(126) = 1.1 × 109; 4.5 × 107) exhibit well-developed new QSE oscillations. Curves 3, 4, for
correlators (4) with λ = 1

2 ; 0 (fN(126) = 1.4 × 104; 47). still exhibit the usual saw-like QSE.

An important issue for direct observation of the new QSE is the experimental possibility of
producing films of different thicknesses, but with the same correlation function of the surface
inhomogeneities. The important point, which can make this possible, is that the only interesting
situation is when the size of the inhomogeneities R is larger than the film thickness. There are
several options:

(i) One can grow a crystal film at a given angle to the crystalline axes.
(ii) In the case of film deposition, the deposition can be properly manipulated on a relatively

large scale R.
(iii) One can prepare a film with ‘perfect’ surfaces and introduce large-scale inhomogeneities

later.

The underlying high sensitivity of the coupling of low QW states to the type and parameters
of the thickness fluctuations is quite general and can also lead to visible effects for grazing
electrons in semiconductor films and quantum waveguides such as in [14]. More detailed
results will be published elsewhere [15].
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